Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria
نویسندگان
چکیده
منابع مشابه
Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria.
Transgenic Escherichia coli expressing pyrroloquinoline-quinone (PQQ) synthase gene from Deinococcus radiodurans showed superior survival during Rose Bengal induced oxidative stress. Such cells showed significantly low levels of protein carbonylation as compared to non-transgenic control. In vitro, PQQ reacted with reactive oxygen species with rate constants comparable to other well known antio...
متن کاملProduction of pyrroloquinoline quinone by using methanol-utilizing bacteria.
A large number of methanol-utilizing bacteria were screened for extracellular production of pyrroloquinoline quinone (PQQ) by using methanol as the carbon and energy sources. Of the bacteria selected, Hyphomicrobium sp. strain TK 0441 was examined for PQQ production by using a jar fermentor. The amount of PQQ in the broth and the level of methanol dehydrogenase activity in the cells were increa...
متن کاملI-3: Reactive Oxygen Species: A Dilemma for
Spermatozoa are very special cells and constantly exposed to the interphase between oxidative stress through high amounts of reactive oxygen species (ROS) and leukocytes, and reduction by means of scavengers and antioxidants. Considering the very special functions of spermatozoa as being the only cells with such high polarization and exerting their functions outside the body, even in a differen...
متن کاملFactors relevant in bacterial pyrroloquinoline quinone production.
Quinoprotein content and levels of external pyrroloquinoline quinone (PQQ) were determined for several bacteria under a variety of growth conditions. From these data and those from the literature, a number of factors can be indicated which are relevant for PQQ production. Synthesis of PQQ is only started if synthesis of a quinoprotein occurs, but quinoprotein synthesis does not depend on PQQ sy...
متن کاملO 22: Reactive Oxygen Species and Epilepsy
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Letters
سال: 2004
ISSN: 0014-5793
DOI: 10.1016/j.febslet.2004.10.061